A note on the global attractor for weakly damped wave equation
نویسندگان
چکیده
منابع مشابه
Global Attractor of the Weakly Damped Wave Equation with Nonlinear Boundary Conditions
In this paper, the main purpose is to study existence of the global attractors for the weakly damped wave equation with nonlinear boundary conditions. To this end, we first show that the existence of a bounded absorbing set by the perturbed energy method. Secondly, we utilize the decomposition of the solution operator to verify the asymptotic compactness.
متن کاملAsymptotic Smoothing and the Global Attractor of a Weakly Damped Kdv Equation on the Real Line
The existence of the global attractor of a weakly damped, forced Korteweg-de Vries equation in the phase space L(R) is proved. An optimal asymptotic smoothing effect of the equation is also shown, namely, that for forces in L(R), the global attractor in the phase space L(R) is actually a compact set in H(R). The energy equation method is used in conjunction with a suitable splitting of the solu...
متن کاملGlobal attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in L(T)
We prove that the weakly damped cubic Schrödinger flow in L(T) provides a dynamical system that possesses a global attractor. The proof relies on a sharp study of the behavior of the associated flow-map with respect to the weak L(T)-convergence inspired by [18]. Combining the compactness in L(T) of the attractor with the approach developed in [10], we show that the attractor is actually a compa...
متن کاملGlobal attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in L2()
We prove that the weakly damped cubic Schrödinger flow in L(T) provides a dynamical system that possesses a global attractor. The proof relies on a sharp study of the behavior of the associated flow-map with respect to the weak L(T)-convergence inspired by [18]. Combining the compactness in L(T) of the attractor with the approach developed in [10], we show that the attractor is actually a compa...
متن کاملRegularity of the global attractor for semilinear damped wave equations
utt + 2ηA 1 2 ut + aut + Au = f(u) in H1 0 (Ω)×L2(Ω), where Ω is a bounded smooth domain in R3. For dissipative nonlinearity f ∈ C2(R,R) satisfying |f ′′(s)| ≤ c(1 + |s|) with some c > 0, we prove that the family of attractors {Aη , η ≥ 0} is upper semicontinuous at η = 0 in H1+s(Ω)×Hs(Ω) for any s ∈ (0, 1). For dissipative f ∈ C3(R,R) satisfying lim|s|→∞ f ′′(s) s = 0 we prove that the attract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2015
ISSN: 0893-9659
DOI: 10.1016/j.aml.2014.10.005